143 research outputs found

    Some new research directions to explore in urban reconstruction

    Get PDF
    International audienceIn this paper we present an update on the geometric modeling of urban scenes from physical measurements. This field of research has been studied for more than thirty years, but remains an important challenge in many scientific communi-ties as photogrammetry, computer vision, robotics or computer graphics. After introducing the objectives and difficulties of urban reconstruction, we present an non-exhaustive overview of the approaches and trends that have inspired the research communities so far. We also propose some new research directions that might be worth investigating in the coming years

    Scanner Neural Network for On-board Segmentation of Satellite Images

    Get PDF
    International audienceTraditional Convolutional Neural Networks (CNN) for semantic segmentation of images use 2D convolution operations. While the spatial inductive bias of 2D convolutions allow CNNs to build hierarchical feature representations, they require that the whole feature maps are kept in memory until the end of the inference. This is not ideal for memory and latency-critical applications such as real-time on-board satellite image segmentation. In this paper, we propose a new neural network architecture for semantic segmentation, "Scan-nerNet", based on a Recurrent 1D Convolutional architecture. Our network performs a segmentation of the input image lineby-line, and thus reduces the memory footprint and output latency. These characteristics make it ideal for on-the-fly segmentation of images on-board satellites equipped with push broom sensors such as Landsat 8, or satellites with limited compute capabilities, such as Cubesats. We perform cloud segmentation experiments on embedded hardware and show that our method offers a good compromise between accuracy, memory usage and latency

    Image partitioning into convex polygons

    Get PDF
    International audienceThe over-segmentation of images into atomic regions has become a standard and powerful tool in Vision. Traditional superpixel methods, that operate at the pixel level, cannot directly capture the geometric information disseminated into the images. We propose an alternative to these methods by operating at the level of geometric shapes. Our algorithm partitions images into convex polygons. It presents several interesting properties in terms of geometric guarantees , region compactness and scalability. The overall strategy consists in building a Voronoi diagram that conforms to preliminarily detected line-segments, before homogenizing the partition by spatial point process distributed over the image gradient. Our method is particularly adapted to images with strong geometric signatures, typically man-made objects and environments. We show the potential of our approach with experiments on large-scale images and comparisons with state-of-the-art superpixel methods

    Finding Good Configurations of Planar Primitives in Unorganized Point Clouds

    Get PDF
    International audienceWe present an algorithm for detecting planar primitives from unorganized 3D point clouds. Departing from an initial configuration, the algorithm refines both the continuous plane parameters and the discrete assignment of input points to them by seeking high fidelity, high simplicity and high completeness. Our key contribution relies upon the design of an exploration mechanism guided by a multiobjective energy function. The transitions within the large solution space are handled by five geometric operators that create, remove and modify primitives. We demonstrate the potential of our method on a variety of scenes, from organic shapes to man-made objects, and sensors, from multiview stereo to laser. We show its efficacy with respect to existing primitive fitting approaches and illustrate its applicative interest in compact mesh reconstruction, when combined with a plane assembly method

    Connect-and-Slice: an hybrid approach for reconstructing 3D objects

    Get PDF
    International audienceConverting point clouds generated by Laser scanning, multiview stereo imagery or depth cameras into compact polygon meshes is a challenging problem in vision. Existing methods are either robust to imperfect data or scalable, but rarely both. In this paper, we address this issue with an hybrid method that successively connects and slices planes detected from 3D data. The core idea consists in constructing an efficient and compact partitioning data structure. The later is i) spatially-adaptive in the sense that a plane slices a restricted number of relevant planes only, and ii) composed of components with different structural meaning resulting from a preliminary analysis of the plane connec-tivity. Our experiments on a variety of objects and sensors show the versatility of our approach as well as its competitiveness with respect to existing methods

    Towards large-scale city reconstruction from satellites

    Get PDF
    International audienceAutomatic city modeling from satellite imagery is one of the biggest challenges in urban reconstruction. Existing methods produce at best rough and dense Digital Surface Models. Inspired by recent works on semantic 3D reconstruction and region-based stereovision, we propose a method for producing compact , semantic-aware and geometrically accurate 3D city models from stereo pair of satellite images. Our approach relies on two key ingredients. First, geometry and semantics are retrieved simultaneously bringing robustness to occlusions and to low image quality. Second, we operate at the scale of geometric atomic region which allows the shape of urban objects to be well preserved, and a gain in scalability and efficiency. We demonstrate the potential of our algorithm by reconstructing different cities around the world in a few minutes

    3D detection of roof sections from a single satellite image and application to LOD2-building reconstruction

    Full text link
    Reconstructing urban areas in 3D out of satellite raster images has been a long-standing and challenging goal of both academical and industrial research. The rare methods today achieving this objective at a Level Of Details 22 rely on procedural approaches based on geometry, and need stereo images and/or LIDAR data as input. We here propose a method for urban 3D reconstruction named KIBS(\textit{Keypoints Inference By Segmentation}), which comprises two novel features: i) a full deep learning approach for the 3D detection of the roof sections, and ii) only one single (non-orthogonal) satellite raster image as model input. This is achieved in two steps: i) by a Mask R-CNN model performing a 2D segmentation of the buildings' roof sections, and after blending these latter segmented pixels within the RGB satellite raster image, ii) by another identical Mask R-CNN model inferring the heights-to-ground of the roof sections' corners via panoptic segmentation, unto full 3D reconstruction of the buildings and city. We demonstrate the potential of the KIBS method by reconstructing different urban areas in a few minutes, with a Jaccard index for the 2D segmentation of individual roof sections of 88.55%88.55\% and 75.21%75.21\% on our two data sets resp., and a height's mean error of such correctly segmented pixels for the 3D reconstruction of 1.601.60 m and 2.062.06 m on our two data sets resp., hence within the LOD2 precision range

    Building large urban environments from unstructured point data

    Get PDF
    International audienceWe present a robust method for modeling cities from unstructured point data. Our algorithm provides a more complete description than existing approaches by reconstructing simultaneously buildings, trees and topologically complex grounds. Buildings are modeled by an original approach which guarantees a high generalization level while having semantized and compact representations. Geometric 3D-primitives such as planes, cylinders, spheres or cones describe regular roof sections, and are combined with mesh-patches that represent irregular roof components. The various urban components interact through a non-convex energy minimization problem in which they are propagated under arrangement constraints over a planimetric map. We experimentally validate the approach on complex urban structures and large urban scenes of millions of points

    Towards the parallelization of Reversible Jump Markov Chain Monte Carlo algorithms for vision problems

    Get PDF
    Point processes have demonstrated efficiency and competitiveness when addressing object recognition problems in vision. However, simulating these mathematical models is a difficult task, especially on large scenes. Existing samplers suffer from average performances in terms of computation time and stability. We propose a new sampling procedure based on a Monte Carlo formalism. Our algorithm exploits Markovian properties of point processes to perform the sampling in parallel. This procedure is embedded into a data-driven mechanism such that the points are non-uniformly distributed in the scene. The performances of the sampler are analyzed through a set of experiments on various object recognition problems from large scenes, and through comparisons to the existing algorithms

    Surface Reconstruction through Point Set Structuring

    Get PDF
    International audienceWe present a method for reconstructing surfaces from point sets. The main novelty lies in a structure-preserving approach where the input point set is first consolidated by structuring and resampling the planar components, before reconstructing the surface from both the consolidated components and the unstructured points. The final surface is obtained through solving a graph-cut problem formulated on the 3D Delaunay triangulation of the structured point set where the tetrahedra are labeled as inside or outside cells. Structuring facilitates the surface reconstruction as the point set is substantially reduced and the points are enriched with structural meaning related to adjacency between primitives. Our approach departs from the common dichotomy between smooth/piecewise-smooth and primitive-based representations by gracefully combining canonical parts from detected primitives and free-form parts of the inferred shape. Our experiments on a variety of inputs illustrate the potential of our approach in terms of robustness, flexibility and efficiency
    • …
    corecore